Annual chapter chair training 2020

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter XI - Training and Using Recurrent Networks

CHAPTER XITRAINING AND USING RECURRENT NETWORKS ................................................................3

متن کامل

Horizon 2020.

11. Bruening-Wright, A., Elinder, F. & Larsson, H. P. J. Gen. Physiol. 130, 71–81 (2007). 12. Kosta, S. P. et al. Int. J. Med. Eng. Informatics 3, 16–29 (2011). 13. Reich, H. J. & Depp, W. A. J. Appl. Phys. 9, 421 (1938). 14. Francis, V. Fundamentals of Discharge Tube Circuits (Methuen, 1948). 15. Richardson, O. W. The Emission of Electricity from Hot Bodies 1st edn, 304 (Longmans, Green and co...

متن کامل

Chapter 27 Altitude and hypoxic training in swimming

Altitude/hypoxic training is nowadays a common practice among swimmers although its benefits are still controversial in scientific literature. Traditional altitude training (“live high-train high”) is still the most frequently used method in swimming, even though from a physiological perspective the “live high-train low” strategy appears to be a more promising alternative. While acute hypoxia d...

متن کامل

Chapter 25: Education, training, and communication for HPV vaccines.

As human papillomavirus (HPV) vaccines come to market, they will face education and training challenges similar to those of other new vaccines, along with HPV-specific issues. Recent studies document stark knowledge gaps about HPV at all levels--among policy makers, healthcare providers, parents, and teens--in both the industrialized and developing worlds. Pharmaceutical companies, public healt...

متن کامل

Chapter 12 TRAINING RECURRENT NETWORKS FOR FILTERING AND CONTROL

Neural networks can be classified into recurrent and nonrecurrent categories. Nonrecurrent (feedforward) networks have no feedback elements; the output is calculated directly from the input through feedforward connections. In recurrent networks the output depends not only on the current input to the network, but also on the current or previous outputs or states of the network. For this reason, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Electromagnetic Compatibility Magazine

سال: 2020

ISSN: 2162-2264,2162-2272

DOI: 10.1109/memc.2020.9241536